Pupal diapause termination in Bactrocera minax: an insight on 20-hydroxyecdysone induced phenotypic and genotypic expressions
نویسندگان
چکیده
The Chinese citrus fruit fly, Bactrocera minax, is an economically important pest of citrus. It exhibits pupal diapause from November to May to combat harsh environmental conditions. Such a long pupal diapause is a barrier for laboratory rearing and development of control strategies against this pest. In the present study, 20-hydroxyecdysone (20E) was used to break pupal diapause of B. minax by topical application. After diapause termination by 20E treated, the pupal ontogenetic processes were observed along the temporal trajectory. The pupal response time to 20E was estimated by detecting the relative expression of 20E responsive genes at different times after 20E-treatment. Results revealed that 20E could effectively terminate the pupal diapause in a dose-dependent manner and significantly shorten the time for 50% adult emergence (Et50). 20E response genes, including ecr, broad and foxo, were up-regulated within 72h, indicating these genes are involved in pupal metamorphosis and diapause termination processes. Morphological changes showed the pupal metamorphosis began ~7 days after 20E-treatment at 22 °C. This study does not only pave the way for artificial rearing in the laboratory through manipulating of pupal diapause termination, but also deepens our understanding of the underlying pupal diapause termination mechanism of B. minax.
منابع مشابه
Transcriptome Characterization Analysis of Bactrocera minax and New Insights into Its Pupal Diapause Development with Gene Expression Analysis
Bactrocera minax is a major citrus pest distributed in China, Bhutan and India. The long pupal diapause duration of this fly is a major bottleneck for artificial rearing and underlying mechanisms remain unknown. Genetic information on B. minax transcriptome and gene expression profiles are needed to understand its pupal diapause. High-throughput RNA-seq technology was used to characterize the B...
متن کاملTranscriptomic and metabolomic profiles of Chinese citrus fly, Bactrocera minax (Diptera: Tephritidae), along with pupal development provide insight into diapause program
The Chinese citrus fly, Bactrocera minax (Enderlein), is a devastating citrus pest in Asia. This univoltine insect enters obligatory pupal diapause in each generation, while little is known about the course and the molecular mechanisms of diapause. In this study, the course of diapause was determined by measuring the respiratory rate throughout the pupal stage. In addition, the variation of tra...
متن کاملDe novo Transcriptome Analysis of Chinese Citrus Fly, Bactrocera minax (Diptera: Tephritidae), by High-Throughput Illumina Sequencing
The Chinese citrus fly, Bactrocera minax (Enderlein), is one of the most devastating pests of citrus in the temperate areas of Asia. So far, studies involving molecular biology and physiology of B. minax are still scarce, partly because of the lack of genomic information and inability to rear this insect in laboratory. In this study, de novo assembly of a transcriptome was performed using Illum...
متن کاملEcdysteroid-Induced Programmed Cell Death Is Essential for Sex-Specific Wing Degeneration of the Wingless-Female Winter Moth
The winter moth, Nyssiodes lefuarius, has a unique life history in that adults appear during early spring after a long pupal diapause from summer to winter. The moth exhibits striking sexual dimorphism in wing form; males have functional wings of normal size, whereas females lack wings. We previously found that cell death of the pupal epithelium of females appears to display condensed chromatin...
متن کاملJuvenile hormone-mediated termination of larval diapause in the bamboo borer, Omphisa fuscidentalis.
Larvae of the bamboo borer, Omphisa fuscidentalis are in diapause for more than nine months (Singtripop, T., Wanichaneewa, S., Tsuzuki, S., Sakurai, S. 1999. Larval growth and diapause in a tropical moth, Omphisa fuscidentalis Hampson. Zool. Sci. 16, 725-733). To examine the endocrine mechanisms underlying this larval diapause, we assayed the responsiveness of the diapausing larvae to 20-hydrox...
متن کامل